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The problem of Rayleigh-BBnard convection a t  low Prandtl number u is investigated 
in a circular geometry. Jones, Moore & Weiss (1976) have formulated, but not solved 
analytically, an asymptotic nonlinear problem in the limit B + O  at small velocities. 
I t  is shown that the problem they posed can be solved exactly in this geometry. The 
solutions are extended by means of expansions in the amplitude e and the reciprocal 
of the Reynolds number BE-1, both assumed small. The problem is related to one that 
occurs in nonlinear mean-field dynamo theory (Malkus & Proctor 1975) and it is 
surmised that similar problems may be expected to appear in a variety of physical 
situations. 

1. Introduction 
The properties of thermal convection a t  low Prandtl number are of interest in the 

study of the convective regions of the sun and stars, where the effective conductivity 
of the stellar material is greatly enhanced by radiative processes. Prandtl numbers in 
the earth’s liquid core are also thought to be rather less than unity, owing to the 
metallic nature of the core material. In these bodies the convection is characterized by 
large Reynolds numbers (inertial forces play a dominant role) except a t  very low 
amplitudes, and appears easily to become turbulent. Our understanding of turbulence 
is very limited, although Malkus (1954a, b), Busse (1969) and others have made progress 
towards an understanding of thermal turbulence by considering its onset as a series 
of discrete transitions and instabilities, leading eventually to time dependence and 
disorder. Other authors have chosen the opposite path: to ignore the instabilities 
(usually by suppressing all motions in a third space dimension) and to study the result- 
ing laminar flow, both in order to elucidate the processes that drive the convection 
and limit its amplitude, and in order to obtain some idea of the macroscopic order 
that exists even in fully developed turbulence. Prominent among these are the numeri- 
cal studies by Moore & Weiss (1973) and Jones et a2. (1976), who solve the full equations 
for a layer heated from below (the Rayleigh-Bhard problem) by finite-difference 
and series-truncation methods. The first study is restricted to two-dimensional rolls 
and the second to flows with symmetry about a vertical axis. Comparison of these 
papers shows a striking contrast between the Prandtl number dependence of the 
evolved steady flow in the two geometries, especially near the critical Rayleigh number 
for the onset of convection. Figure I ,  from Jones et al., shows the convective heat 
transport (the Nusselt number N )  as a function of the Prandtl number cr for different 

t Present address : Department of Applied Mathematics and Theoretical Physics, University 
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FIGURE 1. Nusselt number N as a function of Prandtl number u for R/R, = 1.5, 2, 6, 20, 50 and 
100 in an upright cylinder (from Jones et al. 1976). Note the suppression of convection at small R 
as u+O. 

supercritical Rayleigh numbers R in the cylindrical geometry. It will be seen that at  
low R convection is inhibited significantly as u becomes small: indeed, it is found 
that for R < R, -N 1.32R0 (where R, is the critical Rayleigh number for the onset of 
convection) N + 1 as u -+ 0, so that convection is suppressed entirely in this limit. For 
two-dimensional rolls on the other hand, the dependence of N on u is very weak at 
all R. 

Another interesting result of the Jones et al. study was the discovery that N was 
almost independent of cr at high enough R for both rolls and cylinders, in contrast to 
the theories of Spiegel (1971) and the numerical calculations of Gough, Spiegel & 
Toomre (1974 which predicted that N = N(Ru) for R 9 R,, u < 1 in the cylindrical, 
but not the two-dimensional case. Further, the results of pivoting a perturbation 
scheme about the linear eigensolution corresponding to R, (e.g. Malkus & Veronis 
1958), although satisfactory at all u for the roll solutions, remain valid only for 
( N  - 1) = O(u2) for the cylinders as u+ 0.  

The foregoing results suggested the possibility that for u-+ 0 there was some sort of 
asymptotic limit in which inertial constraints played a dominant role. The discrepancy 
between rolls and cylinders could then be explained by noting that for rolls the ‘inertial 
equation ’ for the velocity u, 

is identically satisfied by the linear eigensolution. For cylinders, (1.1) does not hold, 
so that adjustments due to the inertial terms (which appear dominantly in the scaling) 
occur at much lower amplitudes. Jones et al. demonstrated that a closed problem 
could be formulated in the limit u+O in which (1.1) was satisfied to leading order. 
This led naturally to the introduction of a ‘second critical Rayleigh number’ R,, 
defined as the minimum value of R for which motions satisfying (1.1) can be driven by 
thermal forces. However, their problem as posed was highly nonlinear, and they 
were able to solve it, and demonstrate the existence of R,, only by numerical tech- 
niques. In  this paper, we study the same convection problem in a rather different 

v x (u.Vu) is 0, (1.1) 
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T = T , - A T s i n  4 
FIGURE 2. Geometry and boundary conditions for the horizontal cylinder problem. 

geometry (motions in a horizontal circular cylinder), for which the equivalent non- 
linear system is exactly solvable, so as to demonstrate the existence and certain 
variational properties of R, analytically. We also indicate how the scheme can be 
extended to give solutions a t  small, but not zero, u. I n  92 the problem is formulated, 
and the existence of two possible asymptotic limits ((ul + O ,  ulul-l+O) is noted. 
Solut,ion by expansion methods is undertaken in $9 3 and 4 and in 9 5 a conclusion 
evaluates the results and discusses the question of the stability, i.e. the observability, 
of the flow pattern near the transition point R,. Some experiments of Rossby (1962, 
1969) and Krishnamurti (1973) are invoked to suggest that  there may be conditions 
on u under which the transition point can be directly observed. The paper concludes 
with a discussion of other circumstances in which similar asymptotic limits may occur. 

2. Formulation and isolation of the viscous and inviscid limits 
2.1. Geometry and equations 

We consider st,eady two-dimensional motions of a Boussinesq fluid in a horizontal 
cylinder 9 o f  radius s* = a with its axis along the y* axis of a Cartesian co-ordinate 
system (figure 2).  Here s* and $ are polar co-ordinates, and gravity g is in the -z*  
direction. The cylinder wall is supposed fixed. The condition on the temperature T* at 
the boundary is 

corresponding to a perfectly conducting boundary. The velocity boundary conditions 
are t>he normal ones a t  a fixed surface. It should be noted that Jones et al. considered 
free boundaries only. We should have preferred to  have done the same, but the 
combination of a circular cylinder (the only geometry for which the nonlinear problem 
posed below is solvable) and free boundaries produces effects that  render the problem 
quite different from the normal Rayleigh-BBnard situation. I n  particular, motion 
can occur for any R > 0. The nature of the asymptotic solution in the limit u+O is 
unaffected by this change in the boundary conditions: that  is, a solution of the problem 
can be found without any need for the introduction of boundary layers. For small u, 
however, the deviations from the asymptotic solutioninvolve viscousboun&ary layers, 

T* = T,-ATsin$, (2.1) 

4-2 
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since the residual inertial forces cannot be balanced entirely by thermal forces near the 
boundaries. The effect on the relationship between R and IuI will be to introduce 
fractional powers of u into the appropriate asymptotic expansion, as described in $4. 
The non-dimensionalized equations of steady motion under the Boussinesq approxima- 
tion (in which the effects of density variation with temperature appear only as a 
buoyancy term, the fluid being otherwise considered incompressible) take the form 

u-l[u. VU] + vp = Re6 + VZU, 

U. ve= we, 
v . u  = o ,  u = Vx[$(s,$6)f], 

(2.2a) 

(2.2c) 

(2.2b) 

where the pressurep, velocity u, temperature 6’ and radial distance s may be expressed 
in dimensional form (starred) as 

p* = (v/u2)p, u* = (K/u)u, T* = T,+eAT, s* = as (2-3) 

(so that .9 has non-dimensional radius 1 ) )  where v is the kinematic viscosity, K the 
thermal conductivity and a the radius of 9. (2 is a unit vector in the z direction.) The 
two dimensionless parameters u (Prandtl number) and R (Rayleigh number) take 
the form 

where a is the coefficient of thermal expansion and g = lgl is the acceleration due to 
gravity. If R > 0, the system is said to be unstably stratified. In  this study, we suppose 
that u 4 1, so that the viscosity is ‘small’. The boundary conditions on the stream 
function $ and 8 are 

We first note that (2.2)-(2.5) admit a basic hydrostatic state. If we set u = 0, we 
obtain for the temperature field 8, 

u = V I K ,  R = agATa3/~v, (2.4) 

$ = a$/& = 0, 8 = -sin# for s = 1.  (2.5) 

I v2eo = 0, 
O o =  -sin# for S =  I ,  

and these have the unique solution 
eo = -2. 

Substitution of (2.7) into ( 2 . 2 ~ )  shows that the thermal forces due to (2.7) can be 
balanced by a pressure gradient, and hence that (2.7) is the correct solution if u = 0. 
The problem then becomes one of the stability of this basic state. 

2.2. Expansion scheme f o r  small field amplitudes 

Equations (2.2) are highly nonlinear, and in order to investigate them it is necessary 
to make approximations. We shall suppose that the convection (if it  is present) is 

very weak, so that - 
u =€a, e =  - ~ + e e  etc., E <  1, (2.8) 

where E is a small dimensionless parameter independent of the scaling (but related 
to u and R by the nonlinearity of the equations). Substituting into (2.2)) we obtain 

(2.9a) 

(2.9b) 
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where 7 = e-lcr is the reciprocal of the Reynolds number of the flow. All previous 
studies of the system (2.9) in other geometries have proceeded of necessity by sup- 
posing that both the nonlinear terms in (2.9) may be considered as small perturbations 
of a basic linear problem. This in turn implies that e 4 cr, which, if cr is very small, is 
a severe restriction on the accessible parameter space. To put it another way, the 
series obtained for R as a function of c contains a power series in 7-1, so that its radius 
of convergence will be O(u). [The exceptions to this will occur when the offending 
inertial forces are irrotational: this turns out to be the case for two-dimensional rolls 
between free boundaries.] Although it does not seem possible to obtain analytical 
information unless E < 1, it  is highly desirable to find some way of examining the 
region 1 9 E 9 u. To do this, it  is necessary to consider the inertial term ~-1(ii. Vii) m 
the dominant term in any solution, and in what follows we show that this can be done 
as part of a consistent expansion scheme valid for large Reynolds numbers (7 < 1) .  

We therefore define two limits as follows: 
(a )  The viscous limit: 1 9 7-l 9 E. 

(b)  The inviscid limit: E < 1, 7 < 1. 
We discuss ( a )  in $ 3 and ( b )  in $ 4. The names of the limits are suggestive of the respec- 
tive importance of viscous effects, and are taken from Malkus & Proctor (1975), where 
a rather similar asymptotic situation occurs in the nonlinear theory of mean-field 
dynamo models (the nonlinear effect there being due to Lorentz rather than inertial 
forces). It is helpful to note that (a )  is a small and ( b )  a large Reynolds number expan- 
sion. Experience with other physical situations suggest that, while (a )  is straight- 
forward, (b)  is likely to present difficulties and this is found to be the case here. 

We are not aware of any previous use of limit ( b )  in any problem of thermal con- 
vection, except informally in the Jones et al. study. 

In the next section, then, we derive the equations in the viscous limit and show that 
an expansion based on this limit cannot give any information about the region c 2 u, 
in contrast to the horizontal roll solutions mentioned above, for which the viscous limit 
provides an excellent approximation even for E > cr. In $4, we show how the restric- 
tions of this limit can be avoided and obtain solutions for much larger values of e.  

3. Solution in the viscous limit 
3.1. The eigenvalue problem 

In this section 1 B 7-lg e, so that the nonlinear term in the temperature equation 
(2.9b) may be neglected. We now expand all quantities in powers of q-l, so that 

etc., (3.1) 

R= R +7-'R1+7-2R2+..., 
fi = u1+pu2+ ..., 
B = e1+7-1e2+ ..., 

and fix 7 by requiring, for instance, that for some given1 constant Q2 

-f This constant is determined by the normalization of 54. 
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(the volume integrals being understood to be over a unit lengt'h of 9'). Then we obtain, 
to leading order in 7-1, 

( 3 . 2 ~ )  

0 = V28,+U,.d, (3.2b) 

and these, together with the relevant boundary conditions from (2.5), constitute a 
linear eigenvalue problem for R,. The inertial term can be treated as a perturbation in 
the viscous limit. This linear problem has been studied by many authors in varied 
geometries, starting with Rayleigh (1916); Chandrasekhar (1961, chap. 2) gives a par- 
ticularly full account. The eigenvalue problem in the particular geometry discussed 
here has been treated by Weinbaum (1  964). He obtains Ro = 567 as the critical eigen- 
value, but this value is incorrect owing to his use of an erroneous variational principle. 
Unfortunately, this geometry does not permit a separable solution. Examination of 
the equation reveals that the lowest eigenmode must be of the form 

Vp,  = R, el& + VZU,, 

(3.3) I $I(% 4) = $lO(S) + $12(8) cos 2 4  + @14@) cos 4 4  + . e - 2  

e,(s, 4) = ell($) COS + +@,,(a) COS 34  + ol5(S) COS 54 + . . . . 
It is not our object to give details of this limit, which can in any case be found else- 
where for other geometries; for example Jones et al. give details of the method for their 
vertical cylinder; Malkus & Veronis (1958) were the first to treat nonlinear Rayleigh- 
BBnard convection in a plane layer; a more refined account is given by Schliiter, Lortz 
& Busse (1965). We shall seek only certain general features of the solution, in particular 
an upper bound for R,. It can be shown that (3.2) possesses a variational principle: 
R, is given by the extremumt of the functional 

where $ and 0 are sufficiently regular functions satisfying 

$ = a$/& = 0 = 0 a t  s = 1. (3.5) 

Without solving (3.2), therefore, an upper bound for R, may be found by choosing 
suitable trial functions + and 0. Truncating the expansion of $ at the cosm+ term 
and that of 19~ a t  the cosn4 term yields variational equations which may be solved 
exactly (in terms of Bessel functions) to yield 

R = 408.0 with m = 2, n = 1,  R = 406.7 with m = 4, n = 3. (3.6) 

It is clear that the eigenvalue R, is very close to 406. Equation (3.6) is sufficient to 
show that R, differs from the R, of the next section (one of the main results of this 
study). 

t This extremum can be shown to be a minimum if the eigenfunctions of (3.2) are supposed 
complete (see Chandrasekhar 1961, p. 30). 
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3.2. Extension to Jinite amplitude 

If we suppose that $, and 8, have been found, and that t  e < 7-3, we may in principle 
determine 4, R,, etc., by considering higher-order terms in the 7-1 expansion. At 
O(7-2) and 0(7-3) we have, respectively, 

- RIBlk+ u l .  VU, = - Vp2 + ROB2& + V2u2, (3 .7a )  

o = v 2 e 2 + u 2 . &  (3 .7b)  

( 3 . 8 ~ )  

o = v2es+ug.k. (3 .8b)  

Clearly, these equations are inhomogeneous versions of (3 .2 )  and it is well known from 
the theory of similar systems (see, for example, Schliiter et al. 1965) that steady solu- 
tions exist only if the inhomogeneous left-hand sides are orthogonal to the adjoint of 
the original eigensolution. Since, in this case, the eigenvalue problem is self-adjoint 
(as may easily be verified), these solvability conditions involve the eigensolution 
(u,, 8,) itself, and take the form 

and 
- R,8, k - R28,% + u,. VU, + u2. VU, = - Vp, + ROO3& + V2u3, 

R1J8,ul.kdV = J(U1.VU1).u2dV = 0, ( 3 . 9 4  

(3.9b)  R2J8,u,. d dV + R,J8,ul. k d V  = I(.,. VU, + u,. VU,) . u,dV.  

Thus after some manipulation, and use of (3 .7b )  and (3 .8b ) ,  we obtain 

Q2R2 = [JI  V2@,I2dV +Roll V8,I2 dV - 2R0J8 ,~ ,  . k d V ]  
2 2R$[ (I1 V2@, 1 d VJl V8,I d V ) t  - Rg 18, u2 . i? d V ]  (3 .10)  

and R, 2 0 from the minimality property of R,: equality holds only if $,, 8, = 0 or 
if they are solutions of the homogeneous equations (2 .9 ) .  However, these functions 
actually satisfy (3 .7 ) ,  and since R, = 0 this equation is homogeneous if and only if 

v x (ul.  VU,) = 0. (3.11) 

It may be shown [equation (4 .14)]  that this cannot hold since u1 depends on 4 and 
satisfies the full viscous boundary conditions. We therefore have 

R = R,+E~u-~R,+  ... . (3 .12)  

We may extend the expansion scheme to include corrections to R of order q-l and 
order e2, there being no corrections O(e) since reversing the direction of the flow does 
not affect the physics of the problem. Then the leading-order terms in the expansion 
of R(E)  can be shown by similar methods to be 

R = R, + e 2 u - 2 ~ ~  + 0 ( ~ 4 a - 4 )  + e2u-1~ 1 + €,A,, (3.13) 

where A ,  and A ,  are positive numbers of order unity, so that (3.12) is correct to leading 
order in 7-1 provided only that u < 1. If the expansion of R were continued further, 
it  is clear that part of the expansion is a, power series in q-l, which is presumably valid 
only if 7-l = O( 1 )  or less. Certainly, the slope of the R, e2 curve depends strongly on u 
for these small amplitudes, in contrast to rolls with free plane boundaries, but like the 

t This assumption is made here for simplicity; we shall see, however, that the results of this 
subsection do not depend on such a restriction. 
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problem of Jones et al. In  the next section, we show that this behaviour does not persist 
when E B IJ and that solutions at these larger amplitudes are independent of IJ to 
leading order. 

4. Solution in the inviscid limit (1 9 E B .-) 
4.1. Formulation 

The basis for the limit discussed in this section is contained in the remark that if E < 1 
but IJ < E then the Reynolds number 

r-l €a-1 (4.1) 

is very large, and is therefore a small parameter in which it might be appropriate to 
make an expansion. We therefore suppose E < 1 and 7 < 1 and expand all quantities 
in powers of E and 7: 

m co 
€fi = x EiUi0+T/ 2 €~Uil+0(?pE) 

i=1 i= 1 

and similarly for 6, 9, etc., with 

R = R o o + ~ R I O +  ... +7R01+ ... . 

v x (U,,.VU,,) = 0. 

(4.2) 

(4.3) 

Then on substituting into (2.9)) it is clear that, to leading order in 7 and E ,  we have 

Equation (4.3) states that, in the limit of infinite Reynolds number, there is nothing 
but pressure to balance the inertial forces, which must therefore be irrotational. 
Equation (4.3) is nonlinear, and so the solution we produce below is nonlinear at the 
outset, instead of being only a small perturbation from a linear result. In  terms of the 
stream function +lo and vorticity wl0, (4.3) can be written as 

010 = - V2$1o = f ( + l O h  (4.4) 

wherefis arbitrary. Equation (4.4) is to be solved subject to 

+lo = a$l,/as = 0 at s = 1, (4.5) 

so that the boundary conditions would seem to overdetermine the problem, (4.4) being 
of second order. It will be shown below, however, that (4.4) and (4.5) can be solved in 
this geometry without the need to invoke viscous boundary layers at leading order. 

For the moment, we suppose that (4.4) can be solved for any givenf. The solution 
is still highly degenerate, and we need some constraint which will determine f and 
hence +lo. Batchelor (1956) has noted that, if a flow field consists (in part a t  least) of 
closed streamlines, then the inertial and pressure forces make no contribution to the 
energy budget of each individual closed streamline, which is accordingly determined 
(in the case in hand) by a balance between thermal driving and viscous dissipation. 
Specifically, if we rewrite (2.2a) as 

I = IJ-'[W x u + Vp'] = RBi? + V'U 
and then examine 

f 1.d1, 
C 
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where dl is parallel to u and the integral is taken around any closed streamline c ,  it is 
easy to see that 

f c I .d l  = 0 

and hence that 

for each streamline. (Note that CT is absent from this exact relation.) Thus the undeter- 
mined residual inertial forces 

~ 1 , . ~ ~ 1 0 + ~ 1 0 . ~ ~ 1 , + ~ ~ ~ ~ ~  

which appear in the ordering at the same level as the buoyancy and viscous terms, 
are eliminated in the integral. If we expand (4.8) in powers of E, we obtain at leading 
order 

Roo$ BlOP.dl+f ClO V2ulO.dl = 0, (4.9) 
c10 

where cl0 is a streamline of We determine 6,, from the leading-order terms in 
(2 .2b ) ,  whichgive [cf. (3 .2b) l  

V28,, + Ul0. 4 = 0. (4.10) 

Equations (4.4), (4.9) and (4.10) form a closed problem which, if well posed and solvable, 
will yieldf, @lo, 8,, and Roo. An exactly analogous problem was obtained by Jones et al .  
but they did not attempt to solve it directly: the problem is of a very difficult implicit 
type, since the domain of integration for (4.9) depends on $lo. It is possible that some 
iterative method will yield results in the general case. In  the present geometry, we 
shall show that the equations take the form of a linear fourth-order boundary-value 
problem of classic type, which can be solved to yield a value for Roo. 

4.2. Solution to leading order and determination of Roo 
It is clear by inspection that a family of solutions of (4.4) and (4.5) is 

wl0 = w,,(s); =   lo(^); $lo = a@lo/as = 0 at s = 1. (4.11) 

We may prove quite straightforwardly that (4.11) gives the only solutions that are 
compatible with the fourth-order boundary conditions (4.5). If we write (4.4) as 

then taking the #I derivative and setting s = 1 yields 

Repeated differentiation of (4.12) then yields 

(4 .12)  

(4 .13)  

(4.14) 
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If it  is supposed that $lo can be expanded as a Taylor series about s = 1,  as seems 
reasonable, it follows that t3,.hlo/a$ = 0, and hence that (4.1 1)  gives the only so1utions.t 

We are now able to make a remarkable simplification. Equation (4.11) implies that 
the leading-order streamlines are all circles, independently of the form off, and hence 
that the streamline integral can be evaluated before f is known. For a given streamline, 

dl cc +d$, where + is a unit vector in the Q, direction, and (4.9) then becomes 
A h 

r9* 

RooJ -" B,, cos $ d# + 2n(V2u,,)+ = 0 ,  
0 

(4.15) 

A 

since u,, is in the Q, direction. If u = vl0(s)+ (vlo = -i3$L.,o/as), then (4.10) can be 
written as 

and hence if el,, = Blocos $ we obtain 

V28,, = - Vl0 cos q5 

028,, = - w,,, 

(4.16) 

(4.17) 
where 

d2 I d  1 DZ=-+---- 
ds2 s ds s2' 

Equation (4.15) can now be evaluated to yield 

~R,,B,, + D2vl0 = 0, (4.18) 

where the 4 comes from the integration of cos2 $ round the azimuth. The fourth-order 
system (4.17) and (4.18), subject to the boundary conditions 

B,, = vlo = o on s = 1, (4.19) 

constitutes an eigenvalue problem for Roo. This system is independent of g, and there- 
fore represents an asymptotic limit as g -+ 0. The equations are easily solved to yield 

1 B,, = KJl(w),  
Jl(a) = 0, 

Roo = 201.~ A 432, 

vl, = 01.~KJ,(as), 
01. L 3.82.. . , 

K2 = 21J301.) a2, 
(4.20) 

where J,(x) is a Bessel function of order 1 and K is a normalization constant$ chosen 
such that IO1 $lovlosds = 1. 

Roo is the 'second critical eigenvalue' R, already alluded to. 
This system, then, is much simpler both in structure and in solution than the full 

linear eigenvalue problem. At leading order, the fluid is constrained to move in circles 
by the inertial forces. Since this is not the optimum mode for turning thermal into 

7 It is possible that there are other solutions to the problem in which the inertial forces are 
irrotational away from the boundary, but can match the boundary conditions only by means of 
thin viscous layers. While we have not investigated any of these possible solutions, we are sure 
that (involving additional viscous loss as they do) they would correspond to 8 critical Rayleigh 
number scaled with u-l in some way: that is, very much greater than R,. See the conclusion of 
this paper. 

1 This fixes the previously undetermined constant Q2 defined after (3.1). 
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FIGURE 3. Streamlines cf kl0. Assuming that $rlo(0) = 1, 
the lines are equal intervals of 0.2 in $rlo. 

kinet,ic energy, the unstable temperature gradient needed will be greater than that 
given by the Ro of $3.  Of course, for a given u, 7 is small only if e is bounded away 
from zero. However, if cr is sufficiently small, then if E 9 u the R, e2 curve will appear, 
when extrapolated back to 6 = 0, to pass through Roo. Hence Roo can appear to  be 
a ‘critical Rayleigh number’ analogous to  Ro. Figure 3 shows the streamlines of this 
eigensolution. 

Having obtained the zero-order solution, we may use it as a basis for expansion 
schemes in both e and 7. We treat the e expansion in some detail below; the 7 expansion, 
although involving equations that cannot be solved analytically, does yield the first- 
order correction to R without resort to numerical techniques. 

Before passing on to this programme, we should note that in this case Roo can be 
obt,ained from a variational principle: Roo is the minimum of the functional 

1 JV2$I2dV x [VB[ 2 d  V 
R[@.,81 = s (4.21) 

( j W $ P X )  d q 2  

[cf. (3.4)] if $ is restricted to being a function of s alone. A similar conjecture for the 
Jones et al. problem has now been disproved (personal communication from N. 0. 
Weiss). 

4.3.  The e expansion 
If we now suppose that 7 < €2 (this becomes more and more easy to satisfy as e2 
becomes larger), we may continue the e expansion while still neglecting all terms in 7 
except those of zero order; that  is, we extend the 7 -+ 0 limit to finite amplitude. It is 
clear by comparison with (4.3) that  the inertial forces must be irrotational a t  all 
orders up to  O(e4); therefore we have 

@20 = $20(s)? $30 = $30(s), etc* (4.22) 
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We may determine these functions by making use of the higher-order equations in 
the expansion of (4.8) in powers of e [note that the streamlines remain circular, by 
virtue of (4.22)]. These give 

(4.23) 
and we also have the thermal equations 

(4.24) 
v2ez0 = - Uzo. 2 + Ul0. VO,,, 
VW30 = - 1130. S + uz0. ve,, + ul0. ve, 

from (2.2 b). Note that all the nonlinearity appears in the thermal equations. 

ture variables. We write 
We may simplify (4.23) and (4.24) by extracting the q5 dependence of the tempera- 

(4.25) 
A 4 8,, = lJzo(s) sin 4 + 020(s) cos $, 

0 3 0  = 0 3 0 ( 8 )  sin $ + 0 3 o ( s )  cos 9, 
u20 = v20(s) (P, u30 = '30(') (Pa 

(This can be done because all the nonlinear terms can consistently be taken as pro- 
portional to sin Q, or cos $.) Equations (4.23) then become 

BRlO '10 + P o 0  '2, + D 2 V 2 ,  = 0, (4.26a) 

+R,o 810 + iR10 020 + *Roo 8 3 0  + D2v,o = 0 (4.26b) 

and (4.24) can be written as 

D2&o = - (v,o/s) '10, 

D2830 = - ('IO/') '20 - ('20/') '10, 

02'30 = - '30 -k ('lo/') '20. 

(4.27u, b )  

( 4 . 2 7 ~ )  

(4.27d) 

It is now an eaay matter to verify that ( 4 . 2 6 ~ )  and (4.27 b )  can be solved if and only if 
Rlo = 0 (we should expect this result in any case, since there is no reason for the physics 
of the problem to depend on the sign of E ) .  In  this case, 8,, and wz0 are proportional to 
ol0 amd vl0 respectively, and they may be taken as zero by using the normalization 
condition in 5 3.1. Clearly &30 is also zero, and we are left with the three equations 

D2Oz0 = -vz0, 

(4.28) 

with 820 = &30 = v30 = 0 at s = 1. We now fix R,, by the requirement that (4.28) should 
possess a solution, as for the viscous limit above. After some manipulation and use of 
the equations satisfied by vl0 and 8,, we find 

R,~01810wlosds 2 = - /01vloD2 ($J,(as)8,,, (4.29) 
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and hence 

R,, = - 2a2j01 ~ , , D 2 ~ , , s  ds  > 0.  
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It is therefore only necessary to find a,, in order to find R,,. The solution of ( 4 . 2 7 ~ )  is 

(4 .30 )  
and hence 

a,, = i a 2 ~ 2 [ s [ ~ g ( a s )  - J ; ( ~ ) I  + s ~ ; ( a s )  - a-l~,(as) 

1 1  
R,, = a6K4 [ jol sJ;(as) [J;(as) - J;(a)] ds +jol sJ:(as) ds - ol So Jo(as) J,3(as) ds]  . 

(4 .31 )  

Hence the initial slope of the E,, R line is positive and O(1). Clearly this perturbation 
method can be extended to all orders in E .  Indeed, a full numerical solution would 
not be difficult since there are only three independent equations in one space variable 
to be solved. 

4.4 .  The 7 expansion 

We now suppose that 7 B e2, so that we may consider the O(7) equations while neglect- 
ing corrections of order e2 or higher. Then at  0(7) ,  (2.9) becomes 

u1,. vu,, + U],. vu,, + E(U2,.  vu,, + u10. vu,, + u20. vu,, + u1,. VU,,) 

+ V ( P I O + % ~ ) =  ~ 0 0 ~ 1 ~ ~ + ~ 2 ~ 1 0 + ~ [ ~ 0 0 ~ 2 0 ~ + ~ 2 ~ 2 0 1 +  [~V2ullI+O(~), ( 4 . 3 2 ~ )  
v20,, + Ull .  2 = O(E). (4 .32b)  

If E @ 7, all the terms O(e)  may be neglected. If E B 7, u,, ( = 0) and Bz0 are given by the 
analysis of the previous subsection up to O(e2) .  Then ( 4 . 3 2 ~ )  is linear in ull + EU,, and 
we may consider separately the effect of the forcing term ER,,0,,2 that gives rise to u,,. 
It can easily be shown that this leads to a correction to R of order €7. As shown below, 
the correction to R due to ull is O($ In r ) ,  so for the validity of what follows we must 
require that E @ I$ln7/, which is guaranteed since 7 8 e2. We therefore neglect 
henceforwqrd all terms O ( E )  in (4 .32 ) .  

As well as (4 .32)  we use the power integral 

R 0 - d V -  ( V 2 @ ) ' d V = 0  (4 .33)  1:: j 
obtained by integrating (4 .8 )  over all streamlines. Expanding to 0(7) ,  we obtain 

7 ~ o l j ~ V 0 1 , ~ 2 d v + 2 ~ o , ~ j o l o ~ d v - 2 ~  s (v~@lo.v~@ll )dv  = 0 (4 .34)  

(again, ( 2 . 9 b )  has been used), where 7Ro, is the change in R to leading order. It will 
emerge that it is not necessary to find the full leading-order solution to determine R,,. 

Equation ( 4 . 3 2 ~ )  may be simplified by taking the y component of the curl, which 
yields 

since thah part of Roo a8,,]ax independent of 6 is balanced by V 2 0 , ,  (this constitutes 
the basic stability problem for 7 -+ 0). Then, if we write 

u11 Im P' x (x~I(s )  9)1 (4.36) 

ull. VW,, + u,,. VW,, = ~ R , , . K ~ , ( O ~ S )  cos 2 4  + [ 7 V 2 ~ , , ]  (4 .35)  



110 M .  R. E .  Proctor 

R 

FIGURE 4. Sketch of the relation between R and €2 near the inviscid limit (7 and 8 small). 
As u + O  the slope near R, tends to zero like aZ; hence A ,  the point of minimum distance from 
Roo, tends to Roo as u + O ;  points to the left of A go to the R axis while points to the right go to 
the line E S  = ( R  - Ro0)/R2,. 

we obtain 

where 
2Ka2s-1J1(as) [L2x,,+ “2XlJ = - *R,,KaJ2(as) - [i~L4X11], (4.37) 

xll(s) must satisfy the boundary conditions 

xll = axll/as = 0 a t  s = 0 , l .  (4.38) 

It is immediately clear that, although there are certainly solutions that satisfy the 
conditions a t  s = 0, there is no possibility of the reduced system (with the viscous term 
neglected) being well behaved near s = 1 since J,(a) = 0. I n  order to satisfy the con- 
ditions there, it is necessary to match the solution of the reduced system (valid away 
from s = 1) to an inner solution near the boundary where the viscous term has to be 
taken into account. Details of the matching process are given in the appendix. The 
main result derived therein is that to leading order in the interior 

211 = P(s> + c, ?+ In (71$ J,W)S), (4.39) 

where P(s)  is a real function of s and Cv is a complex constant calculated as part of the 
matching process. The logarithm appears since the derivative of the outer solution 
P(s)  is logarithmically singular near s = I .  From (A 11) we have 

c, = C , J ( ~ K ~ ~ J , ( C X ) ) *  (4.40) 

plus terms of order l/ln$. It is now clear that the last term in (4.34) vanishes to 
leading order, since @lo is independent of q5 and @ll oc e2i@. Now O,, cc cos q5 and &,hll/ax 
contains terms proportional to sin 4, cos q5, sin 34 and cos 3q5. Thus the only part that 
contributes to (4.34)t is 

(4.41) 

7 It may be verified that there is no contxibution, at this order, from the viscous boundary 
la ye’. 
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Hence R,, = 7) In $B, where 

B = - Im (C,) ROoIaK N 650. (4.42) 

Since Iny) < 0 for small 7, R,,, < 0: this might be expected in any case, since it is 
plausible that R(E) would be a monotonic function. We have now found the  leading- 
order corrections to R when 7 < €2 and when ?) 3 s2. Since corrections to R from the 
O ( q )  equation are much smaller than those from the O(7) equations and since there are 
no corrections O(E)  to R, we may assume that 

(4.43) 

Then to leading order the two corrections we have found can be combined to yield 

R = Roo + e2R2, + Q(T* In (a) Bs-4 +smaller terms (4.44) 

and this is sketched in figure 4. It is clear from this expression that as cr+ 0 the point 
of closest approach of the R, E curve to (R,,, 0 )  comes nearer and nearer to that point. 
Clearly figure 4 is qualitatively very similar to that found by Jones et al., and it seems 
that their solutions are a manifestation of a similar limit to the one described here. 

5. Conclusions 
In previous sections we have demonstrated the existence of an asymptotic solution 

to the problem of steady convection in the limit ( ~ 3 0 ,  at least in certain geometries. 
A major feature of this solution is the existence of a ‘second critical Rayleigh number’ 
Roo > R, which represents the lowest R at which irrotational advection of momentum 
can occur. The problem solved is formally nonlinear (although the equations in our 
particular geometry reduce to linear ones) and hence the solutions that are obtained 
are valid well outside the range of validity of normal perturbation theory.? This is not 
unusual in itself; what is new is that the analysis is able to distinguish between inertial 
and thermal nonlinearities, and to consider the first as dominant while the second 
remains only as asmall perturbation. Our system is somewhat specialin that the ‘second 
critical Rayleigh number’ Roo obtained is independent of (T. In  more general geo- 
metries, we should expect that a transition from low to high Reynolds number could 
still occur, except that in general the inertial torques would vanish only away from 
the boundaries. The viscous boundary conditions would then have to be met by viscous 
boundary layers. We should therefore expect in general that Roo N (T-4 or d, but 
that the characteristic ‘kink’ in the curve of Nusselt number us. RayIeigh number 
would still occur. We should note, however, that the sort of limit described by Jones 
et al. and ourselves is most likely to be relevant to convection between free boundaries 
(as occurs in the sun) since then the system is free to choose its horizontal planform. 
Indeed, Spiegel (personal communication) plans to extend the work of Gough et al. 
(1 975) to allow for this planform selection. This type of asymptotic problem occurs in 
other physical situations; in particular, the nonlinear a-effect dynamo models investi- 
gated by Malkus & Proctor (1975) and Proctor (1975) exhibit an essentially similar 
dichotomy in the basic eigenvalue problem depending on whether magnetic or viscous 
effects tend to zero most rapidly. 

t While the analogous problem posed by Jones et al. cannot be solved by these simple methods, 
there is no doubt that in principle a similar perturbation expansion can be applied to their 
problem also. 
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0 1000 2000 3000 4000 5000 6000 

FIG~RE 5 .  Results of an experiment by Rossby (1962) using mercury (a = 0.026) with a distance 
between the plates of 2 em. The circles and central broken line give R as a function of N R  in two 
different experimental configurations. For R > R, N 1800 the fluid is in motion, so N > 1. The 
outer broken lines give an envelope for all experimental results in this region. At R = 2800 there 
seems to be a distinct break in the R, N R  dependence. 

N K R  

A final question concerns the stability of the transition described here and the 
possibility of its being observed in the laboratory. It is generally considered that 
convection a t  low cr becomes unstable to time-dependent disturbances very near to 
the critical Rayleigh number R,. Indeed, Clever & Busse (1974) have indicated that the 
value of R for the onset of time dependence tends to R, as u+ 0. The experiments of 
Krishnamurti (1 973), however, show that time-independent behaviour can persist 
for mercury (a N 0.026) significantly beyond R,; although she finds no evidence of the 
above transition, the scatter in her results is large. Rossby (1962) also carried out 
experiments on mercury, and found what appears to be a ‘kink’ in the curve of heat 
flux vs. Rayleigh number a t  R 2: 1.5R0 (figure 5 ) .  Rossby’s motions were time depen- 
dent and turbulent and so any analcgy is fraught with peril. We do consider, though, 
that the similarity between his curve and the one we predict for steady motions 
is not entirely fortuitous. The numerical calculations of Clever & Busse (1974) for 
convection between rigid boundaries shows no significant decrease in the Nusselt 
number as cr + 0 as long as R is large enough. This would suggest strongly that inertial 
forces modify the flow in such a way tha t  their effect on the body of the flow is not 
large. Our study shows one way in which this might be achieved: other ways, presum- 
ably involving time-dependent disordered motions, are beyond the scope of present 
analysis. 

We believe that the transition that occurs in our particular geometry may well be 
observable in the laboratory. First, the observed weak dependence of the heat flux 
on the Prandtl number at high Rayleigh number is an indication of some basic order 
in the flow in which inertial forces are almost irrotational. Second, it has been 
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observed above (Q 3) that for Ro c R < Roo the Reynolds number is a function of the 
Rayleigh number alone, and in particular is independent of CT. Jones et al. have noted 
that, for their geometry, the Reynolds number rises to about 30 near R = Roo. This is 
not very large, and it certainly seems plausible that the Reynolds number is low 
enough to permit time-independent behaviour up to R = Roo. Further, as Roo is 
approached, the flow streamlines become more and more circular, and one certainly 
feels that this pattern is less unstable than the linear eigensolution, whose stream- 
lines are oval. We hope to carry out experiments to test this possibility. 

The author wishes to record his gratitude to Dr C. A. Jones, Dr D. R. Moore and 
Dr N. 0. Weiss for communicating to him their preliminary numerical results and for 
many fruitful discussions while their paper was being prepared. This work was under- 
taken while the author was a participant in the 1975 Geophysical Fluid Dynamics 
Summer Program, Woods Hole, Massachusetts. A first report of this work appea.rs in 
the Fellowship Lectures for that year. Grateful thanks are due to all the Staff and 
Fellows, especially the Director, Professor W. V. R. Malkus, and to the National 
Science Foundation for support under Grant GA-32593. 

Appendix. Asymptotic matching in the limit of small T,I 

neglecting the viscous term, we can easily verify that 
We seek solutions to (4.37) when q is small. If we first treat the outer problem, 

x 1 1  = Q(4 + CJ,(as), (A 1) 

where Cis arbitrary as yet (and independent of any scaling). Q(s)  is a particular integral 
that is not well behaved a t  s = 1 since J,(a) = 0. Specifically, 

Q(s)  N A (  1 - s) In (1  - s) + 0{( 1 - s)21n (1  - s ) }  

+ A ,  + A,( 1 - s )  + O{( 1 - s),}, 

(A 2) 

where A = - 
be found without evaluating A ,  and A,. Hence, near s= 1 

and A ,  and A ,  are real constants that depend linearly on A .  Rol can 

xll N A( 1 - s )  In (1  - s) + A ,  +A,( 1 - s )  + C[J,(a) + 2( 1 - s )  J,(a)]. (A 3) 

For the inner problem, near s = 1, we define the new variables 

where 

Then to leading order the inner problem becomes 

i,i& + 5’&5 = A 

zt5 = Ai) Gi (@) + Cf(&i), 

(A 5 )  

(A 6) 

with the boundary conditions ,t = ,f6 = 0 a t  5 = 0.  The solution for can be written as 

wheref(fl) is the Airy function Ai(5) and 
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(see Abramowitz & Stegun 1964, p. 448) Other solutions become exponentially large 
as -+ cn and are thus excluded by the matching conditions. 6 is an arbitrary (and 
scale-independent) constant. Hence the full solution is 

and as -+ 00 this becomes to leading order 

2 N AEln5-t A, +A,6+ 8[C, + C25] + O(S), (A 8 )  

where A, and A, depend on A alone and C, and C, are independent of 8. In  order to 
match the inner and outer solutions, we must write (4.41) in terms of 5. Thus, from (A 3), 

+ SC, In S[J2(a) 6-1 + 2J2(cr) 513, (A 9) 

where C has been written as Co+ 61n6C8+o(61nS). Matching (A 8) with (A 9) then 
gives 

and therefore a term A In (6) C1/C2 appears in (A 8). It may easily be verified that there 
is no other term of this form and order in the higher-order expansion of the inner 
solution. Hence this term must be matched against a term in (A 9), so that clearly 

xl, - G[Afln 5 + A51n S + A , W  + A25 + C0[J2(a) 6-1 + 2J2(a) 51 

A ,  + C , J , ( ~ )  = 0, 6 = A In (s)/c, + O(1) (A 10) 

Co = AC,/C2 J2(a) = 1.035a2i-*/J2(a), 

where Cl and C, are easily found from the properties of Ai (6). There is no need to con- 
tinue the matching further, (78 being the leading-order term with non-zero imaginary 
part. 
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